| Preface | | Chapter 2: Introduction to Natural Gas Engineering 30 | 3.6 | Gas Formation Volume Factor | 70 Chapte | r 7: Flow of Fluid in Reservoir | 134 | | | | |--|---|--|---|--|--------------------------|--|------------|---|-------------------------|--| | Chapter 1: MATLAB Programming Fundamentals | | 2.1 Beneath the Earth's Surface 31 | | Gas Compressibility | 74 | No. of Control Cont | | | | | | 1.1 | Introduction to MATLAB | 0 - Types of Traps | 3.8 | Gas Material Balance | 79 | 7.1 The Basic Radial Flow Equation | | PREFACE | | | | | - Desktop Basics - Creating a MATLAB Script M-File - Creating a MATLAB Function M-File | 2.2 Natural Gas Production | | References | | 7.2 The Radial Flow of Natural Gas in Reservoir 7.3 Generating the Pseudo Pressure Curve | 135
138 | | | | | | - Creating a Function Handle - The Format Function - Entering Long Statements - The Colon Operator Data Input and Output | - Raw Natural Gas - Condensates | 4.1 Static Bottom-hole Pressure | | 84 | 7.4 The Dimensionless Form for the Radial Flow of Gas 7.5 The Constant Production Rate from | 141 | Although a great deal of engineering practice is not all mathematical, yet the engineering world-wide are ploughing vast amount of advanced mathematics and properties into their students. The emphasis is shifting more and more toward for implement | | | | | | 4 - Natural Gas Liquid (NGLs) | 4.2 | 4.2 Generating the Integral Values of Ppr dPpr | 86 | an Infinite-acting Reservoir | 142 | methods with ready-to-use tools. With the advent of computers, the need arises to acq
the efficient way of computing for the engineering students. This book is intended for
undergraduate petroleum engineering students who want to write programs for compu-
problems in their subjects. It can serve as a reference book for others who want to le | | | | | - Requesting User Input - Displaying the Values of Variables - Read Data from the Text File | - Boiling Temperatures - Refrigeration Plants - Lean Oil-Absorption Plants - Liquified Petroleum Gas (LPG) | 4.4
4.5 | Friction in Pipes Flowing Bottom-hole Pressure Modified Sukkar and Cornell Method | 93
96 | 7.6 The Constant Production Rate from a Finite Reservoir with No Flow at Boundary | 148 | | | | | 1.3 | Arrays and Matrices | | | References | | 7.7 The Constant Production Rate from a Finite | | MATLAB programs. | | | | | | 2.4 Liquified Natural Gas (LNG) | Chapter 5: Flow of Gas in Pipelines | | 99
100 | 7.8 Pressure Drawdown Test for Gas Wells 7.9 Pressure Buildup Test for Gas Wells References | 153
157 | programming to function MATLAB has a simple programming environment and a | | | | 1.4 | Two-Dimensional Plots | - A Typical LNG Process | 5.2 | Using IGT Equation | 108 | References | | to solve problems. Programming can be frustrating at time | | | | | Create a 2-D Line Plot - LNG Transport Display Major and Minor Grid Lines Using the plot Function 2.5 LNG Storage LineSpec (Line Specifications) Formatting a Plot Underground Storage LNG Storage Tanks | | | 5.3 Using Clinedinst Method 5.4 Piping in Series 5.5 Piping in Parallel 5.6 Gas Flow in the Non-horizontal Pipelines | 111
115
116
117 | Appendix Index | 161
178 | program that does what you want it to do, it is very satisfying. It is a creative exercises your brain. Anyway the author wishes you enjoy the benefits of ger ing using MATLAB which is a high-performance language for technical comparintegrates computation, visualisation, and programming. 178 | | | | 1.5 | Program Flow Controls | | | References | | | | | | | | | - if Statement - if, elseif, else Statement | | Chapter 6: Gas Compression and Flow Measurement | | 121 | | | | Aung Myint
July 2016 | | | | - switch, case, otherwise Statement | Chapter 3: Properties of Natural Gas | 6.1 | Isothermal Compression Process | 122 | | | | | | | | - for Loop - while Loop - continue Loop - break Loop - return Statement | 3.1 Gas Gravity 47 3.2 Pseudo-Critical Properties 49 3.3 Corrections for Impurities in Sour Gases 54 3.4 Gas Compressibility Factor 60 | 6.2
6.3
6.4 | Adiabatic Reversible Compression
Reciprocating Compressors
Gas-Flow Measurement | 124
127
128 | | | | | | | | References | 3.5 Gas Viscosity 66 | | References | | | | | | |